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Chapter 4

Infinite series
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4.1 Introduction

A lot of students are confused between sequences and series,

so we have first to clarify the difference between them.

Sequence is a function whose domain is the set of positive

integers, the sequence  n n 1
S




converge to a limit if

nnlim S L


 , L (1)

A series is the sum of the terms of a sequence. Finite

sequences and series have defined first and last terms,

whereas infinite sequences and series continue indefinitely.

In mathematics, given an infinite sequence of numbers { an },

a series is informally the result of adding all those terms

together: a1 + a2 + a3 + · · ·

These can be written more compactly using the summation

symbol ∑.



Infinite Series

198

Series is summation of number of terms, if the number of

terms is finite, then it is called finite series, but if the number

of terms is infinite, then it is called infinite series.

A necessary but not sufficient condition for the series n
n 1

U





to be convergent is nnlim U 0  .

Example 1

Which of the following series may be convergent?

n 1

n
n+1






n 1

1
n+1






n

n 1

3
n+1






Solution:

The first and third series are divergent since n
nlim 0n+1

 and

n

n
3lim 0n+1

 , while the second series may be convergent since

n
1lim 0n+1

 , but by test of convergence we will find that this

series is divergent.
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Special cases

1-Sequence  n
n 1

r



is convergent if n

nlim r 0


 , -1< r < 1

2- Sequence  n
n 1

r



is divergent if n

nlim r


 , r > 1 or r < -1

3- Series p
n 1

1
n




 is convergent if  P > 1

4- Series p
n 1

1
n




 is divergent if P ≤ 1

5- Series
n 1

nP



 is convergent if  0 < P < 1

6- Series
n 1

nP



 is divergent if P ≥ 1

Example 2

Test the following series for convergence:

3

n 1

1( )n



 ,

n

n 1

2( )3



 ,

n 1

1-n3( )5



 , 5

n 1

1
n





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Solution:

Refer to the above special cases 3, 4, 5, 6, we will get the first

and second series are convergent while the third and fourth

series are divergent.

Cauchy sequence

Every convergent sequence is called Cauchy sequence

Example 3

Determine Cauchy sequence from the following sequences:

 n

n 1
3




, n

n 1

n
3
  
 
  




,

n 1

1
n
  
 
  




,

n 1

3n
n 1
  
 
  



 ,
3

2
n 1

n
n 1
  
 
  




,

2n

n 1

n +3
n( )

  
 
  





Solution:

Refer to second point in the above special cases, therefore

 n

n 1
3




is divergent and refer to formula (1) for determining

whether the other sequences convergent or not, therefore
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n
n 1

n
3
  
 
  




,

n 1

1
n
  
 
  




,

n 1

3n
n 1
  
 
  



 ,
2n

n 1

n +3
n( )

  
 
  




are

convergent sequences,  since n n
nlim 0

3
 , n

1lim 0n
 ,

n
3n 3n 1lim  ,

2n 6
n

n +3( ) enlim  , but
3

2
n 1

n
n 1
  
 
  




is divergent

sequence  since
3

2n
n

n 1
lim 


, hence  the convergent

sequences are Cauchy sequences.

Report 1

Is the sequence
n 1

n
cosn
3





  
 
  

convergent?

4.2 Test of Convergence

As we know, the necessary but not sufficient condition for

the series n
n 1

U



 to be convergent is nnlim U 0


 , and then we

have to use suitable method for test of convergence from the

following methods.
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A- Cauchy test (nth root test)

Consider the series n
n 1

U



 , and then to test whether the series

is convergent or divergent using Cauchy test, apply the

following steps:

 Take the nth root for Un, then take the limit of n nU when n

tends to infinity,

 If n nnlim U 1


 , then n
n 1

U



 is convergent,  if n nnlim U 1


 ,

then n
n 1

U



 is divergent, but if n nnlim U 1


 , then this test

fail and we have to search for another method.

Example 4

Test the following series for convergence:

a)
n 1

n
nn

3




 , b) 2-

n 1

ne



 , c) n

n 1

1
n




 , d)

22n

n 1

n +3( )n



 ,

e)
n

n 1

n( )2n +3



 .
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Solution:

a) Since n
n

n
n n

n nlim 133
lim

   , therefore
n 1

n
nn

3




 is

divergent,

b) Since 2n -n
n

-n
nlim e lim e 0 1

    , therefore 2-

n 1

ne



 is

convergent,

c) Since n nn n
1 1lim lim 0 1n n    , therefore n

n 1

1
n




 is

convergent,

d) Since
22n

n
n n

62nn +3 n +3lim ( ) lim( ) e 1n n 
   , thus

22n

n 1

n +3( )n



 is divergent,

e) Since
n

n
n n

n n 1lim ( ) ( ) 12n +3 2n +3 2lim    , hence

n

n 1

n( )2n +3



 is convergent.
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B- Integral test

Consider the series n
n 1

U



 , then to test whether the series is

convergent or divergent using integral test so that if

n
1

U dn


 equal any real number, then n
n 1

U



 is convergent and

if n
1

U dn


 , then n
n 1

U



 is divergent.

Example 5

Test the following series for convergence:

a) 2-

n 1

nn e



 ,  b) 2

n 1

1
n 1



  ,  c)
n

2n
n 1

e
e 1



  ,  d) 2n
n 1

1
e 1



  ,

e)
n 1

1
n




 .

Solution:

a) Since 2 2 2

1
-n -n -n

1 1

1 1 1n e dn -2n e dn (e )2 2 2e
       , thus

2-

n 1

nn e



 is convergent,
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b) Since
1

1
2

1

1 dn (tan n) 2 4 4n 1


 

    
 , therefore 2

n 1

1
n 1



 

is convergent,

c)Since
1

n
1 1 1 1

2n
1

ne dn (tan e ) tan tan e tan e2e 1


   

   
 ,

therefore
n

2n
n 1

e
e 1



  is convergent,

d) 2n
1

1 dn
e 1



 =
2n 2n 2n

2n 2n
1 1

1+e e e( ) dn (1 ) dn
e 1 e 1

   
  

1

2n 2ln(e 1) ln(e 1)(n - ) 12 2
    , therefore 2n

n 1

1
e 1



  is

convergent,

e) Since
11

1 dn (ln n)n
 

  , therefore
n 1

1
n




 is divergent.
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C - Ratio test

Consider the series n
n 1

U



 , and then to test whether the series

is convergent or divergent using ratio test, apply the

following steps:

 Find Un+1 and obtain the ratio n+1
n

U
U ,

 Take the limit of the ratio n+1
n

U
U when n tends to infinity,

 If n+1
n n

Ulim 1U
 , then n

n 1
U




 is convergent and if

n+1
n n

Ulim 1U
 , then n

n 1
U




 is divergent, but if n+1

n n

Ulim 1U
 ,

then this test fail and we have to search for another method.

Example 6

Test the following series for convergence:

a)
n 1

1
n!




 ,    b) 2

n

n 1

3
n 1



  ,    c) 2
n 1

2n!
(n!)




 ,   d)

n

n 1

n
n!




 ,

e) n
n 1

n
e




 .
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Solution:

a) Since Un+1 = 1
(n +1)! , hence the ratio n+1

n

U n! 1
U n +1(n +1)!  ,

so n+1
n n

Ulim 0 1U
  , therefore

n 1

1
n!




 is convergent,

b) Since Un+1= 2

n+13
(n +1) 1 , hence the ratio

22

2 2
n+1
n

n+1

n
( (U 3 n 1) 3 n 1)

U (n +1) 1((n +1) 1)3
  


, so n+1

n n

Ulim 3 1U
  and

thus 2

n

n 1

3
n 1



  is divergent,

c) Since Un+1 = 2
(2n +2)!

((n +1)!)
, hence the ratio

2

2 2
n+1
n

U (2n +2)!(n!) (2n +2)(2n +1)
U ((n +1)!) 2n (n +1)!  , so n+1

n n

U
lim 4 1U   ,

therefore 2
n 1

2n!
(n!)




 is divergent,
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d) Since Un+1 =
n+1(n +1)

(n +1)! , hence the ratio

n+1
n

n+1 nn
n

U (n +1) n! n +1 1( ) 1U n n(n +1) n
( )!    , so n+1

n n

Ulim e 1U
  ,

therefore
n

n 1

n
n!




 is divergent,

e) Since Un+1 = n+1
n+1
e

, hence the ratio n+1
n

n

n+1
U (n +1)e n +1
U nen e

  ,

so n+1
n n

1Ulim 1U e
  , therefore n

n 1

n
e




 is convergent.

D- Comparison test

Consider the series n
n 1

U



 , then to test whether the series is

convergent or divergent using comparison test. This done by

Choosing series
n 1

nV



 from n

n 1
U




 so that if Vn ≥ Un and Vn

convergent, then Un convergent and if Vn ≤ Un and Vn

divergent, then Un divergent.
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Example 7

Test the following series for convergence:

a)
2

5 2n 1

n
n 1



  , b) 3
n 1

1
n 1



  , c)
n 2

1
ln(n)




 , d)

5

2

n 1

n
n n



  ,

e) 3
n 1

1
(2n +3)




 .

Solution:

a)  The series
n 1

nV



 =

n 1

8/5n



 is divergent, therefore

n 1

2

5 2
n

n 1



 is divergent as 8/5n =
2

5 2
n

n 1
as n tends to

infinity.

b) The series
n 1

nV



 = 3

n 1

1
n




 is convergent, therefore 3

n 1

1
n 1



 

is convergent as 3
1
n

> 3
1

n 1
.
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c) The series
n 1

nV



 =

n 2

1
n




 is divergent, therefore

n 2

1
ln(n)





is divergent as 1
n < 1

ln(n) .

d) The series
n 1

nV



 =

n 1

1
n



 is divergent, therefore

5n 1

2n
n n



 is divergent as 1
n =

5

2n
n n

as n tends to

infinity.

e) The series
n 1

nV



 = 3

n 1

1
8n




 is convergent, therefore

3
n 1

1
(2n +3)




 is convergent as 3

1
n

> 3
1

(2n +3)
.

Note: For the series n
n 1

U



 , if nnlim U 0  , then n

n 1
U




 is

divergent
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4.3 Alternating series

In mathematics, an alternating series is an infinite series of

the form
n

n
n 1

(-1) U



 with Un ≥ 0 (or Un ≤ 0) for all n. A finite

sum of this kind is an alternating sum. An alternating series

converges if the terms Un converge to 0 monotonically. It

may be absolutely convergent or conditionally convergent or

divergent.

The alternating series
n

n
n 1

(-1) U



 to be absolutely convergent

or conditionally convergent must satisfy the following

conditions:

a) nnlim U 0


 , b) Un > Un+1 , otherwise it will be divergent.

If the above conditions are satisfied and n
n 1

U



 is convergent,

then
n

n
n 1

(-1) U



 is called absolutely convergent and if
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n
n 1

U



 is divergent, then

n
n

n 1
(-1) U




 is called conditionally

convergent.

Example 8

Determine the convergent series and classify them

a)
n-1

2
n 1

2n(-1)
4n 3



  ,   b)
n-1

2
n 1

(-1)
n 3



  ,   c)
n-1

n 1

(-1)
n




 ,

d)
n-1

n 1

(-1)
ln(n)




 , e)

n-1 n

n 1

(-1) 3
n!




 .

Solution

a) Let Un = 2
2n

4n 3
, n 2

2nlim 0
4n 3




, Un+1 = 2
2n +2

4(n +1) 3
,

hence Un > Un+1 . By using integral test, we will get that

2
n 1

2n
4n 3



  is divergent, so
n-1

2
n 1

2n(-1)
4n 3



  is called conditionally

convergent.
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b) Let Un= 2
1

n 3
, n 2

1lim 0
n 3




, Un+1= 2
1

(n +1) 3
, hence

Un > Un+1 .  By using integral test, we will get that 2
n 1

1
n 3



 

is convergent, so
n-1

2
n 1

(-1)
n 3



  is called absolutely convergent.

c) Let Un = 1
n , n 2

2nlim 0
4n 3




, Un+1 = 1
n +1 , so Un > Un+1 .

By using integral test, we will get that
n 1

1
n




 is divergent, and

then
n-1

n 1

(-1)
n




 is called conditionally convergent.

d) Let Un = 1
ln(n) , n

1lim 0ln(n)
 , Un+1 = 1

ln(n +1) , hence

Un > Un+1. By using comparison test, we will get that
n 1

1
ln(n)






is divergent, so
n-1

n 1

(-1)
ln(n)




 is called conditionally convergent.
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e) Let Un =
n3

n! , n

n3lim 0n!
 , Un+1 =

n+13
(n +!)! , hence  Un > Un+1 .

By using ratio test, we will get that
n

n 1

3
n!




 is convergent, so

n-1 n

n 1

(-1) 3
n!




 is called absolutely convergent.

4.4 Power series

In mathematics, a power series (in one variable) is an infinite

series of the form n 0 1
n=0

nf(x) = a (x -c) a + a (x -c)


 +

2
2a (x -c) 3

3+a (x-c) ... , where an represents the coefficient of

the nth term, c is a constant, and x varies around c (for this

reason one sometimes speaks of the series as being centered

at c). This series usually arises as the Taylor series of some

known function; the Taylor series article contains many

examples. In many situations c is equal to zero, for instance

when considering a Maclaurin series. In such cases, the

power series takes the simpler form:

2 3
n 0 1 2 3

n=0

nf(x) = a x a +a x +a x +a x ...


  .
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4.4.1 Interval of convergence of power series

To determine the interval of convergence of power

series
nb

n
n 1

u (x )



 , we have to use ratio test such that

b
n+1

bn
n

n 1

n
u (x )lim 1

u (x )


 is the sufficient and necessary condition

to obtain the interval of convergence.

Example 9

Find interval of convergence for the following power series

a)
n-1 2n

2
n 1

(-1) x
n 3



  , b)
n n-1

n 1

3 x
n!




 , c)

2-n
n

n 1

n e
x




 ,   d)

n

3
n 1

(x 2)
n 1



  - ,

e)
2

n

n
n 1

3
(n 1)(x 2)



  -
.
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Solution

a) Since Un =
n-1 2n

2
(-1) x

n 3
, and Un+1 =

n 2n+2

2
(-1) x
(n +1) 3

,  hence the

ratio
22

n+1
n

n 2n+2 2

2 n-1 22n

U (-1) x (n 3)xn 3
U (n +1) (n +1)(-1) x3 3

  
 

, therefore

2
n+1
n

2

2n n
U (n 3)xlim limU (n +1) 3  




= 2
nlim x 1  to be convergent,

hence -1 < x < 1 is the interval of convergence.

b) Since Un =
n n-1

3 x
n! , and Un+1 =

n+1 n
3 x
(n +1)! ,  hence the ratio

n+1
n

n+1 n

n n-1
U n!3 x 3x
U (n +1)(n +1)!3 x

  , thus n+1
nn

Ulim U  n
3xlim (n +1)

0 1  , hence
n n-1

n 1

3 x
n!




 is convergent for all x.
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c) Since Un =
2-n

n
n e

x , and Un+1 =
2-(n+1)

n+1
(n +1) e

x
,  hence the

ratio
2

2

-

-
n+1
n

(n+1)n

(2n+1)n+1 n
U x (n +1) e (n +1)
U x n e ne x

  , thus n+1
nn

Ulim U

(2n+1)n
(n +1)lim 0 1

ne x   , so
2-n

n
n 1

n e
x




 is convergent for all x.

d) Since Un =
n

3
(x 2)
n 1
- , and Un+1 =

n+1

3
(x 2)
(n +1) 1
- ,  hence the ratio

3 3
n+1
n

n+1

n 33
U (n 1)(x 2) (n 1)(x 2)
U ((n +1) 1)((n +1) 1)(x 2)

  


- -
-

, therefore

3
n+1
n 3n n

U (n 1)(x 2)lim limU ((n +1) 1) 



- = nlim (x 2) 1 - to be

convergent, hence 1 < x < 3 is the interval of convergence.

e) Since Un =
n

2 n
3

(n 1)(x 2) -
, & Un+1 =

2

n+1

n+1
3

((n +1) 1)(x 2) -
,

hence the ratio :

n

22

2 2
n+1
n

n+1

n n+1
U 3 (n 1)(x 2) 3(n 1)
U ((n +1) 1)(x 2)3 ((n +1) 1)(x 2)

  


-
--
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Therefore

2

2
n+1
nn n

U 3(n 1)lim limU ((n +1) 1)(x 2) 

 - = n

3lim 1(x 2) - to be

convergent, hence x 2 3  , thus x > 5 or x < -1 the interval

of convergence.

4.5 Problems

I) Do the following sequences {an} converge or diverge?

a) n n
na
e

 , b) n
n2a 1

n
 
 
 

  , c)
n 1

n n 1
( 1) na

2






d) n
2n 7a
3n 1



, e)
2

n n
na
2

 , f) na n 2 n 1   
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II) Test the following series for convergence

a) 2n+1
n 1

n
4 (n 1)



 
2

n 1

n
(3n 1)!



 
n n

n n
n 1

4 9
5 11








n
n 1

1
7 +5n




 n

n

n
n 1

3 2
5 7






 n 2

n 1

n
3 (2n!)




 (1 2n)

n 1

n!
3







n

n 1

3
(2n +1)!




 n

n 1

n!
n 2




 n

n

n 1

7 2
9







b) (1 2n)

n

n 1

n
3 






n2

2
n 1

2n 1
n +1

[ ]





2 3 5n
3

n 1

5n -3n
7n +2

[ ]





n

n

n 1

3
5






n 1
n

nn
(3n+1)




 2-

n 1

ne





n
n

n 1

e
n






4n

n 1

2n +3( )n





n

n 1

n( )2n +3





n

n
n 1

3
((2n +1)!)





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c)
n 2

Ln(n)
n




 2n

n 1
n e






n 2

3
nln(n)






n
n 1

1
e 1



  n 1

cosn + sinn
sinn cosn




  2

n 1

n
4n 3



  2
n 1

1
n 9



 

2
n 1

7
3n 2n



 
n 1

1
3n






n 1

n
2n +1






d)
7 5 3

2

n 1

4n 3n
n n








n 1

5n -2
9n 7



  4

2

n 1

3n n
n 5








n 2

1
Ln(n)




 2

n 1

7
3n 2n



  4

2

n 1

3n n
n 5








5 4

2n 1

n n
n 5








3

5 4n 1

n n
n 1






 4

n 1

1
n n



  2 4
n 1

1
(2n 3)



 
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e)
n

n 2
n 1

(-1)
3 (2n!)






n

2
n 1

(-1)
(n 9)



 
n-3

n 0

(-1) n
n 4



 

2
n 1

cos(n
n +1






n-1

n 2

(-1)
nln(n)






n-1 n

n 1

(-1) 3
(2n +1)!






n+1

n
n 1

(-1)
n 2






n-1

n 1

(-1)
n +1






n-1

2
n 1

3n(-1)
n 3



 
n-1

2
n 1

(-1)
4n 3



 

f)
n

2n+1
n 1

(-10)
4 (n 1)



  ,
2

n 1

n
(2n 1)!



  ,
n

2
n 1

(-1)
(n 1)



  ,
n 1

n +2
2n 7



  ,

(1 2n)

n

n 1

n
3 




 ,

n3

3
n 1

5n -3n
7n +2

[ ]



 , n

n 1

1
3 +n




 , 2 2

n 1

n
n cos (n)



  ,

4

2

n 1

n 2
n 5






 ,

3 7 3

2

n 1

4n n
n n






 ,

n-3

n 0

(-1) n
n 4



  ,
n 1

cos(n
n





 ,

n2

2
n 1

2n 1
n +1

[ ]




 , 2
n 1

7
3n 2n



  ,
n 2

1
n Ln(n)




 , 2n

n 1
n e





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n n

n n
n 1

5 7
3 2






 ,

n 2

Ln(n)
n




 ,

n

n 2
n 1

(-1)
3 (2n!)




 ,

n+1

n
n 1

(-1)
n 2




 ,

II) Find interval of convergence for the following series and

determine the behavior of the series at the endpoints of the

interval. State clearly where the series converges absolutely,

where it converges conditionally, and where it diverges.

n 2n

2n 2
n 1

(-1) x
2 (n!)




 ,

n+1 n
n

n 1

(-1) (x -2)
n 2




 ,

n

2n+1
n 1

(-1)
(2n +1)!x




 ,

3 2n

n 1
n x




 ,

n

n 1

(x -3)
n!




 ,

n n
n

n 1

(-1) (x -6)
n 3






n n

n 2
n 1

(-1) x
3 (n!)






n 2n

n 1

(-1) (x -1)
2n!






n

n 1

x
n!






n
n

n 1

(x -2)
n 5






n 1

n nn x





n

n+1
n 1

n(x +2)
4







